O0x27 Privacy
Exercise Session

ogi”\hexhive =PrL

Data de-anonymization

e Netflix Prize
o An open competition for the best algorithm to
predict user ratings for films
o Netflix Prize Dataset: Netflix released
anonymous ratings of 500,000 Netflix users
e Netflix data de-anonymization
o “How to Break Anonymity of the Netflix Prize
Dataset” Narayanan and Shmatikov
o correlated rankings with IMDB records to
de-anonymize users

Ex1. What are Donald’s favorite movies

Setting

e Goal: de-anonymize “anonymized” datasets
Download zip file from Moodle
e “anonymized” COM-402 databases - similar to Netflix DB

o com402-1.csv
o com402-2.csv
o com402-3.csv

e Public IMDB databases

o imdb-1.csv
o imdb-2.csv
o imdb-3.csv

e Task: find out what movies a user with email “donald. trump@whitehouse.gov"
has rated.
e The answer for true movies are given in files:

o user-1.csv
o user-2.csv
o user-3.csv

sha256(salt | email), sha256(salt | movie), date, rating

email, movie, date, rating

3 parts

Ex1-1: Dates are giving it away

e Each user rated the movie at the same date in both datasets
Ex1-2: More realistic

e Dates are randomized, reflecting the fact that you might
not rate a movie on Netflix and on IMDb on the same day.

Ex1-3: Even more realistic (optional)

e Dates are within 14 days, and are following a triangular distribution using
Python’s ‘random.choices™ and weights: '[1, 2, ..., 14,13, ..., 1]".

Ex. 1.1)

IMDB; Cc COM-402,

email, sha256(salt | email),
movie, sha256(salt | movie),
date, rating date, rating

You can test with the user-*.csv file if the guesses are true

o assert movie_guesses == true_movies
o print(movie_guesses)

Ex. 1.1) - solution idea

e If the date and stars match in public and anonymized
dataset, then record the candidate plaintext email and movie

o hash2movie[anon_entry.movie].append(pub_entry.movie)
o user2hash[pub_entry.user].append(anon_entry.user)

e Guess the victim's email hash as the most common
candidate.

o Get_most_common helper method

e Filter the ratings made by this victim’s email hash

Ex. 1.2)

IMDB, € COM-402,

email, sha256(salt | email),
movie, sha256(salt | movie),
date, randomize(date),
rating rating

Where randomize : D — D maps each date
(uniquely) to some random date

Ex. 1.2) - solution idea

e Match movie hashes to plaintexts by frequency.

o Sort_by_freq method in helpers.py
o movie2hash[movie_name] = movie_hash
o hash2movie[movie_hash] = movie_name

e (et the victim's movie hashes from the public data.
O filter_ratings_by_user(public, victim_email)
e Identify the victim's email hash:
o Map the email hashes to the corresponding movie hashes from the
anonymized data.

o find the hash that has all the movie hashes from above.

m If multiple possibilities, then the generated datasets are not good.

Ex. 1.3) [OPTIONAL]

IMDB3; C COM-402;

email, sha256(salt | email),
movie, sha256(salt | movie),
date, real randomize(date),
rating rating

Where real_randomize : D — D maps randomly maps
each date according to a triangular distribution within 14
days of the initial date

Ex2. Differentially Private Queries

[optional]

. IMDb_
e Playing the role of the company: IMDB

e Researchers send you queries, you respond in a differentially private way
e Query : “For a given movie, how many reviews are above a threshold?”
© get count (movie name, rating threshold, epsilon)
e Each researcher gets their own privacy budget ¢, : the total epsilon a researcher
can use across queries.
e for each query, an epsilon value can be specified
o the higher epsilon is, the higher the accuracy of the response will be, but will

allow for less queries. and vice versa, a lower epsilon will allow for more queries.

12

Laplace mechanism for adding noise

. . AF\ . .
Assume f is a scalar function, i.e., f:D - R Lap (?) is noise drawn from a

Laplacian distribution of parameter %
Return A(D) = f(D) + Lap (A{)

/ \ Af is the sensitivity of function f:
Af = max|f(D) = f(D-)|
The ground Privacy guarantee

truth answer . Selected b i
y querier,
to the query NOISe! Higher¢more accurate

results, but less queries

e In your database, a user can only rate one movie once. This means sensitivity Af =1

® np.random.laplace(loc=0, scale=1. / epsilon)

13

Sequential composition

e Sequential composition property: If algorithms A, A,, ..., A _use

independent randomness and each A, satisfies ¢-differential privacy,

respectively. Then (A, A, ..., A))is (g + &,*...+ g)-differentially private
o can keep account of spent privacy budget and ensure that the queries

do not exceed it.

14

Testing with verify.py

» (base) » solution git:(main) x /usr/local/anaconda3/bin/python
Running tests...

> Basic privacy budget accounting
PASSED &

> Privacy budget depletion control
PASSED ¢

> DP noise distribution
PASSED &

> Multiple query behavior (I)
PASSED ¢

> Multiple query behavior (II)
PASSED ¢

15

