
0x27 Privacy
Exercise Session

Data de-anonymization

● Netflix Prize
○ An open competition for the best algorithm to

predict user ratings for films
○ Netflix Prize Dataset: Netflix released

anonymous ratings of 500,000 Netflix users
● Netflix data de-anonymization

○ “How to Break Anonymity of the Netflix Prize
Dataset” Narayanan and Shmatikov

○ correlated rankings with IMDB records to
de-anonymize users

Ex1. What are Donald’s favorite movies

Setting

● Goal: de-anonymize “anonymized” datasets
● Download zip file from Moodle
● “anonymized” COM-402 databases - similar to Netflix DB

○ com402-1.csv
○ com402-2.csv
○ com402-3.csv

● Public IMDB databases
○ imdb-1.csv
○ imdb-2.csv
○ imdb-3.csv

● Task: find out what movies a user with email `donald.trump@whitehouse.gov`
has rated.

● The answer for true movies are given in files:
○ user-1.csv
○ user-2.csv
○ user-3.csv

4

sha256(salt | email), sha256(salt | movie), date, rating

 email, movie, date, rating

3 parts

5

Ex1-1: Dates are giving it away

● Each user rated the movie at the same date in both datasets
Ex1-2: More realistic

● Dates are randomized, reflecting the fact that you might
not rate a movie on Netflix and on IMDb on the same day.

Ex1-3: Even more realistic (optional)

● Dates are within 14 days, and are following a triangular distribution using
Python’s `random.choices` and weights: `[1, 2, …, 14, 13, …, 1]`.

Ex. 1.1)

sha256(salt | email),

sha256(salt | movie),

date, rating

email,

movie,

date, rating

● You can test with the user-*.csv file if the guesses are true

○ assert movie_guesses == true_movies
○ print(movie_guesses)

Ex. 1.1) - solution idea

7

● If the date and stars match in public and anonymized
dataset, then record the candidate plaintext email and movie

○ hash2movie[anon_entry.movie].append(pub_entry.movie)
○ user2hash[pub_entry.user].append(anon_entry.user)

● Guess the victim's email hash as the most common
candidate.

○ Get_most_common helper method

● Filter the ratings made by this victim’s email hash

Ex. 1.2)

sha256(salt | email),

sha256(salt | movie),

randomize(date),

rating

email,

movie,

date,

rating

Where maps each date
(uniquely) to some random date

Ex. 1.2) - solution idea

9

● Match movie hashes to plaintexts by frequency.
○ Sort_by_freq method in helpers.py
○ movie2hash[movie_name] = movie_hash
○ hash2movie[movie_hash] = movie_name

● Get the victim's movie hashes from the public data.

○ filter_ratings_by_user(public, victim_email)

● Identify the victim's email hash:

○ Map the email hashes to the corresponding movie hashes from the

anonymized data.

○ find the hash that has all the movie hashes from above.
■ If multiple possibilities, then the generated datasets are not good.

Ex. 1.3) [OPTIONAL]

sha256(salt | email),

sha256(salt | movie),

real_randomize(date),

rating

email,

movie,

date,

rating

Where maps randomly maps
each date according to a triangular distribution within 14
days of the initial date

Ex2. Differentially Private Queries
[optional]

Ex2

12

● Playing the role of the company: IMDB

● Researchers send you queries, you respond in a differentially private way

● Query : “For a given movie, how many reviews are above a threshold?”

○ get_count(movie_name, rating_threshold, epsilon)

● Each researcher gets their own privacy budget : the total epsilon a researcher

can use across queries.

● for each query, an epsilon value can be specified

○ the higher epsilon is, the higher the accuracy of the response will be, but will

allow for less queries. and vice versa, a lower epsilon will allow for more queries.

13

Laplace mechanism for adding noise

● In your database, a user can only rate one movie once. This means sensitivity =1

● np.random.laplace(loc=0, scale=1. / epsilon)

Noise!
Privacy guarantee

Selected by querier,
Higher⇔more accurate
results, but less queries

The ground
truth answer
to the query

Sequential composition

14

● Sequential composition property: If algorithms A1, A2, …, Ak use

independent randomness and each Ai satisfies εi-differential privacy,

respectively. Then (A1, A2, …, Ak) is (ε1+,ε2+...+ εk)-differentially private

○ can keep account of spent privacy budget and ensure that the queries

do not exceed it.

Testing with verify.py

15

