
0x27 Privacy
Exercise Session



Data de-anonymization

● Netflix Prize
○ An open competition for the best algorithm to 

predict user ratings for films
○ Netflix Prize Dataset: Netflix released 

anonymous ratings of 500,000 Netflix users
● Netflix data de-anonymization

○ “How to Break Anonymity of the Netflix Prize 
Dataset” Narayanan and Shmatikov 

○ correlated rankings with IMDB records to 
de-anonymize users



Ex1. What are Donald’s favorite movies



Setting

● Goal: de-anonymize “anonymized” datasets
● Download zip file from Moodle
● “anonymized” COM-402 databases - similar to Netflix DB

○ com402-1.csv
○ com402-2.csv
○ com402-3.csv

● Public IMDB databases
○ imdb-1.csv
○ imdb-2.csv
○ imdb-3.csv

● Task: find out what movies a user with email `donald.trump@whitehouse.gov` 
has rated.

● The answer for true movies are given in files:
○ user-1.csv
○ user-2.csv
○ user-3.csv
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sha256(salt | email), sha256(salt | movie), date, rating

         email,                   movie,    date, rating



3 parts
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Ex1-1: Dates are giving it away

● Each user rated the movie at the same date in both datasets
Ex1-2: More realistic

● Dates are randomized, reflecting the fact that you might 
not rate a movie on Netflix and on IMDb on the same day.

Ex1-3: Even more realistic (optional)

● Dates are within 14 days, and are following a triangular distribution using 
Python’s `random.choices` and weights: `[1, 2, …, 14, 13, …, 1]`.



Ex. 1.1)

sha256(salt | email), 

sha256(salt | movie), 

date, rating

email, 

movie,

date, rating

● You can test with the user-*.csv file if the guesses are true

○ assert movie_guesses == true_movies
○ print(movie_guesses)



Ex. 1.1) - solution idea
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● If the date and stars match in public and anonymized 
dataset, then record the candidate plaintext email and movie

○ hash2movie[anon_entry.movie].append(pub_entry.movie)
○ user2hash[pub_entry.user].append(anon_entry.user)

● Guess the victim's email hash as the most common 
candidate.

○ Get_most_common helper method  

● Filter the ratings made by this victim’s email hash



Ex. 1.2)

sha256(salt | email), 

sha256(salt | movie), 

randomize(date), 

rating

email, 

movie,

date,

rating

Where                                             maps each date 
(uniquely) to some random date  
 



Ex. 1.2) - solution idea
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● Match movie hashes to plaintexts by frequency.
○ Sort_by_freq method in helpers.py
○ movie2hash[movie_name] = movie_hash
○ hash2movie[movie_hash] = movie_name

● Get the victim's movie hashes from the public data.

○ filter_ratings_by_user(public, victim_email)

● Identify the victim's email hash:

○ Map the email hashes to the corresponding movie hashes from the 

anonymized data.

○ find the hash that has all the movie hashes from above.
■ If multiple possibilities, then the generated datasets are not good.



Ex. 1.3) [OPTIONAL]

sha256(salt | email), 

sha256(salt | movie), 

real_randomize(date), 

rating

email, 

movie,

date,

rating

Where                                             maps randomly maps 
each date according to a triangular distribution within 14 
days of the initial date
 



Ex2. Differentially Private Queries
[optional]



Ex2
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● Playing the role of the company: IMDB

● Researchers send you queries, you respond in a differentially private way

● Query : “For a given movie, how many reviews are above a threshold?”

○ get_count(movie_name, rating_threshold, epsilon)

● Each researcher gets their own privacy budget         : the total epsilon a researcher 

can use across queries.

● for each query, an epsilon value can be specified 

○ the higher epsilon is, the higher the accuracy of the response will be, but will 

allow for less queries. and vice versa, a lower epsilon will allow for more queries.
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Laplace mechanism for adding noise

● In your database, a user can only rate one movie once. This means sensitivity       =1

● np.random.laplace(loc=0, scale=1. / epsilon)

Noise!
Privacy guarantee

Selected by querier,
Higher⇔more accurate 
results, but less queries

The ground 
truth answer 
to the query



Sequential composition
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● Sequential composition property: If algorithms A1,  A2, …,  Ak use 

independent randomness and each  Ai satisfies εi-differential privacy, 

respectively. Then (A1,  A2, …,  Ak) is (ε1+,ε2+...+ εk)-differentially private 

○ can keep account of spent privacy budget and ensure that the queries 

do not exceed it.



Testing with verify.py
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